

Greywater – ROADMAP

Funded under the Water and Innovation Action of the 7th Framework programme of RTD-D of the European Union

demEAUmed technological solutions

UVOX : UV (advanced) Oxidation

Barbara Berson MBA

demEAUmed final conference Barcelona, Spain 18th May 2017

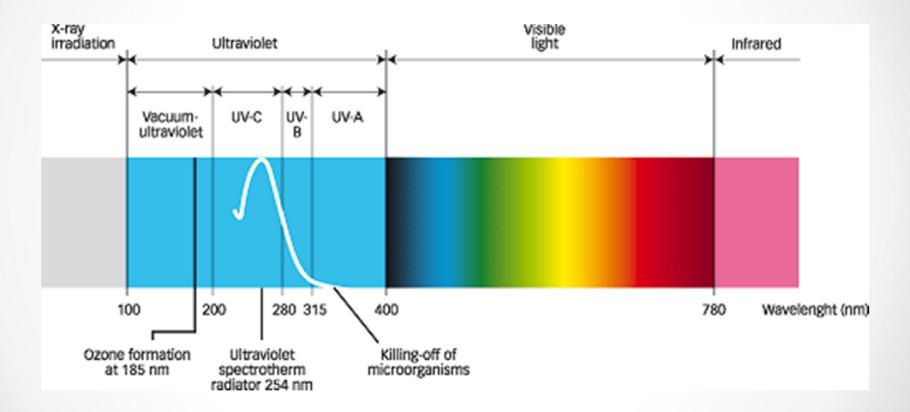
Outline

details!

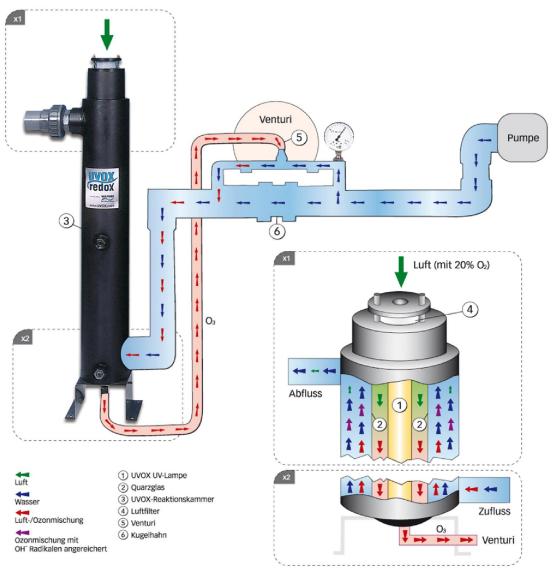
1. UVOX: The sun as a role model 2. The UVOX Triple Process with one single UV lamp:

- Ozone
- UV Disinfection
- advanced oxidation process (AOP)

3. UVOX in the swimming pool:


- **Operational parameters**
- Summary of the test results
- Further research & development
- Go and check the Competitive edge for public swimming pools poster for more

4. Other areas of application.



1. UVOX : The sun as a role model

1. The UVOX: the triple purification

- Ozone
- UV Disinfection
- Advanced Oxidation

UVOX -2000 operational parameters:

UVOX 2000	Factsheet
Full Scale :	20 -70 m³⁄h
Pool seize:	60 – 210 m ³
Air Ozone flow:	4 – 16 l/min
Energy consumption:	
UVOX Lamps:	4 x 180 Watt /h
Booster pump:	depending on
	operating
	pressure
Carbon Footprint:	

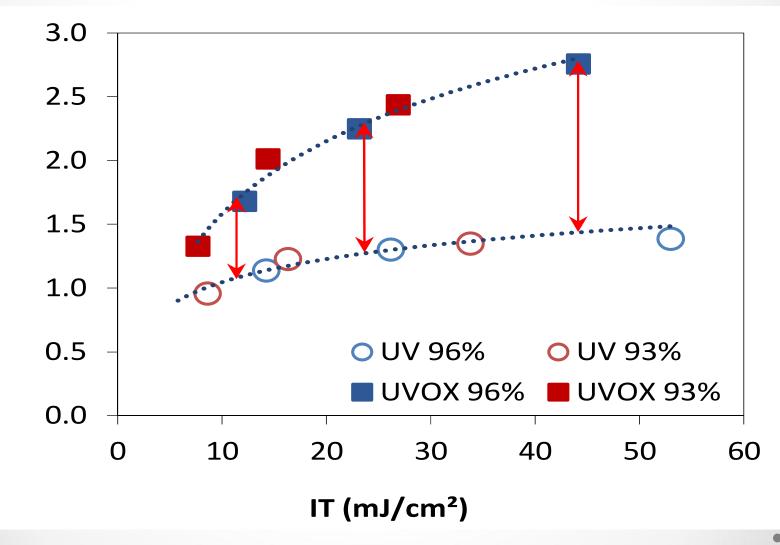
Summary of the Testresults:

* The killing rate of Exherichia Coli (E-Coli):

The <u>complete</u> removal / inactivation of the Exherichia Coli (E. Coli) was achieved already by a very low UV-Dose of 7 mJ/cm².

A removal of > Log 5

The killing rate of B. Subtilis spores:


A removal of Log 1,6 of the B. Subtilis was already achieved by the UV-Dose of 12,5 mJ/cm² at T =93%. A water flow of 59 m³ / h was effectively treated.

A highly effective inactivation of

B. Subtilis as result of the A.O.P.:

Log (N_o/N)

Summary of the test results on

DBP's using water recirculation:

The UVOX 2000 with an UV Intensity of < 9 mJ/cm² and a flow capacity of 59 m³ per hour:

- reduced rapidly the combined Chlorine levels.
- no additional DBPs (THMs, HAAs, HANs and Bromate) were formed.
- Cloroform and DCAA were reduced after 3 times of recirculation.
- In case the Body Fluid Analog (micro pollutants) was treated by UVOX before chlorination, the formation of BDPs was reduced significantly.

Competitive edge of UVOX:

Advantages:

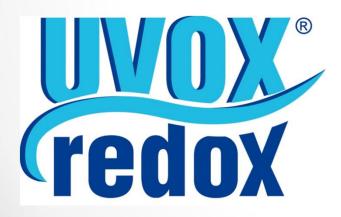
- Triple water treatment:
 - ✓ Ozone
 - UV-Disinfection
 - Advanced oxidation
- Chemical free way of water purification
- A green technology
- Absolutely safe and easy to maintain
- No dangerous by-products
- * A low carbon foodprint

Competitive Edge of UVOX:

Costs & savings:

- Low capital / investment costs
- Low operation costs
 - A main stream of 59 m³ pool water can be treated effectively with only 2.22 kW/h energy consumption.
- Additional savings on water, chemicals and energy.
- Early Return-on-Investment in approximately 2.8 years.

Other application areas:


Funded under the Water and Innovation Action of the 7th Framework programme of RTD-D of the European Union

Thank you very much for

your attention!

Barbara Berson MBA

WAPURE International GmbH Nassauer Allee 45 47533 Kleve Germany Phone: +49 (0) 2821 9780047 b.berson@uvox.com

WWW.UVOX.COM

Funded under the Water and Innovation Action of the 7th Framework programme of RTD-D of the European Union

demEAUmed technological solutions

vertECO: Vertical Ecosystem

alchemia nova

phytochemistry \odot closed loop processes Heinz Gattringer, alchemia-nova GmbH

demEAUmed final conference Barcelona, Spain 18th May 2017

Radtke Biotechnik

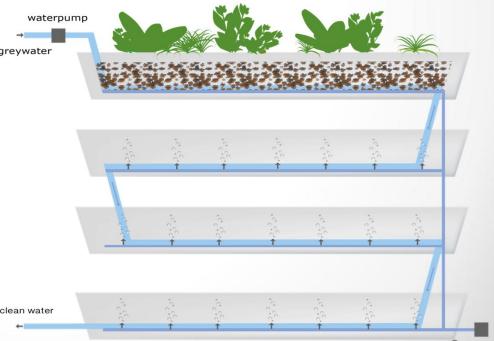
Company Background

- o Consultancy and R&D services
- Research driven SME
- National and European research projects
- Sustainable management and use of natural resources
- Circular-economy technologies
- o Nature based solutions
- spin-off "blue carex phytotechnologies GmbH" for commercialization of technologies

vertECO: basic principles

Constructed Vertical Ecosystem: compact constructed wetland in vertically cascading stages with high metabolic activity

microorganisms and plant synergy provide pollution removal


Innovation: vertical setup → integration unto walls, even indoors **integration of ecosystem services into buildings**

Target pollutants:

organic matter (biodegradable) NPK-nutrients micropollutants

Treatment line(s): greywater

Austrian Patent AT 516363 achieved within demEAUmed project

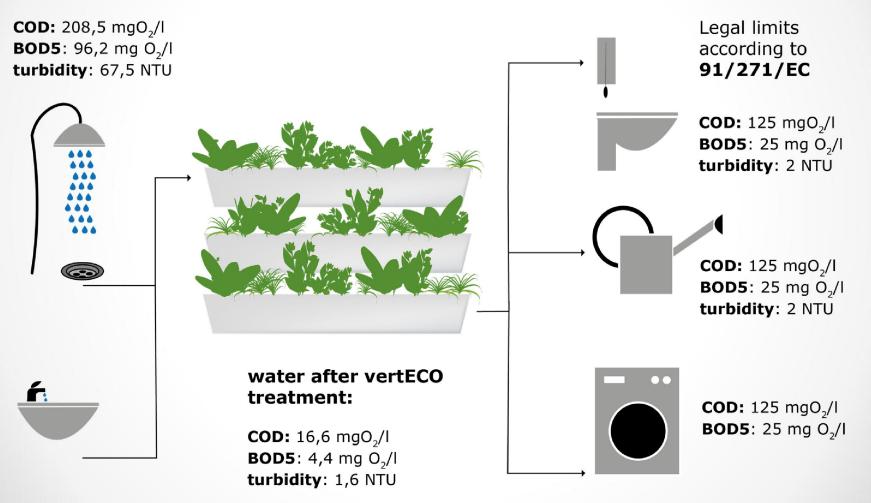
vertECO @ Hotel SAMBA

TRL from 5 → 8 during demEAUmed 2014-2017

vertECO

Operational Parameters

Parameter	
installation area (wall space)	≈ 4 m²/m³-water per day
static weight load	≈ 1.500 kg/m³-water per day
light requirements	> 800 lux
energy requirements	< 2 kWh/m ³ -water
maintenance	gardening



vertECO: Resume of results

Selected Parameters

greywater:

analytics by ICRA - data from: 2015-2017

vertECO: Market Application

Where can it be applied?

- greywater effluents
- swimming ponds

- Who may be interested?
- high water costs periodic water scarcity

- irrigation of recreational areas e.g. golf course
- guests value sustainability efforts
- companies committed to sustainability

VertECO: Multiple Benefits

- significant water savings
- energy efficient water treatment
- nature based solution
- aesthetic / design potential
- microclimatic effects
- clear sustainability message

Thank you for your attention

Institute for innovative phytochemistry The closed loop processes

For further information:

www.demEAUmed.eu

www.alchemia-nova.net

heinzjos@alchemia-nova.net

office@bluecarex.at

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No. 619116

Funded under the Water and Innovation Action of the 7th Framework programme of RTD-D of the European Union

demEAUmed technological solutions

Electrochemical treatments:

ECEF & SPEF

Ignacio Montero Castro

demEAUmed final conference Barcelona, Spain 18th May 2017

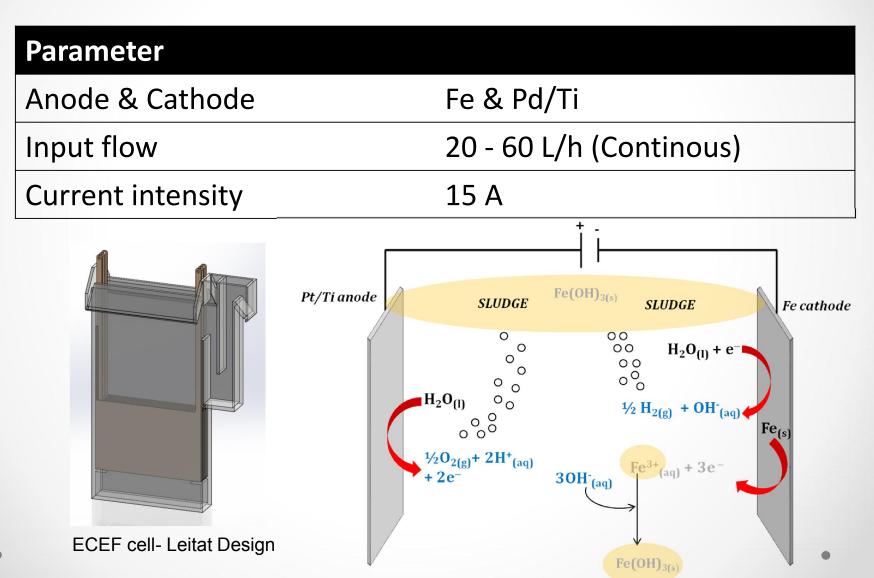
- 1. ECEF basic principles
- 2. ECEF resume of results

- 3. Application into the tourism and water market
- 4. SPEF basic principles
- 5. SPEF resume of results

6. Application into the tourism and water market

Electrocoagulation-Electroflotation Basic principles

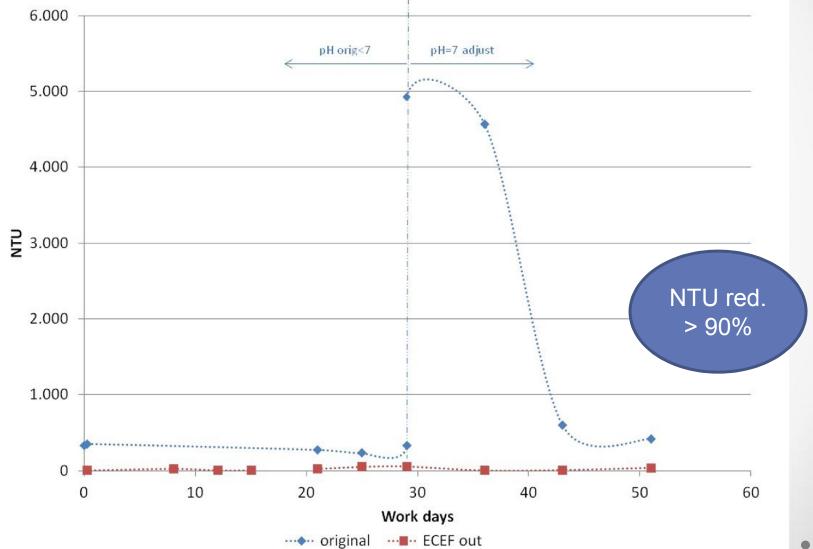
ECEF: Electrochemical primary treatment for destabilizing and absorbing water pollutants.


Innovation: Electroflotation (EF) process derived from hydrogen and oxygen gas generation and coagula dragging.

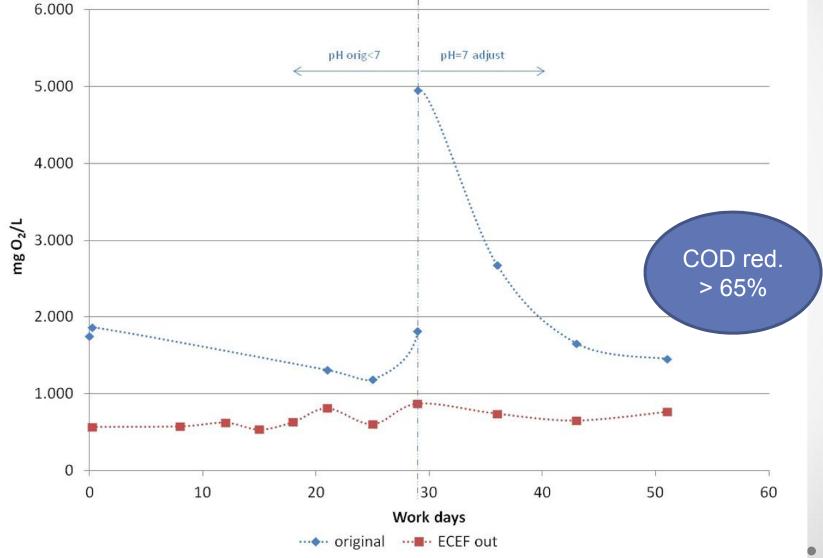
Target pollutants:

oils and fats, suspended solids, organic matter and microbiological charge.

Treatment line: Wastewater



ECEF - Resume of results NTU Reduction



ECEF - Resume of results

COD Reduction

Application into the market

Is it market-competitive?

- Estimated OPEX: 0,26€/m³
- Easy sludge disposal
- No need for coagulant additions

Who may be interested?

- Users who want to reduce maintenance management
- Wastewater treatment lines with spatial restraints
- Facilities with high solids, oils/fats content in ww

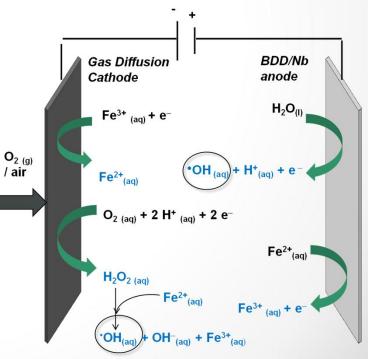
Solar Photoelectro-Fenton Basic principles

SPEF: Advanced electrochemical oxidation process for removing hazardous organic contaminants.

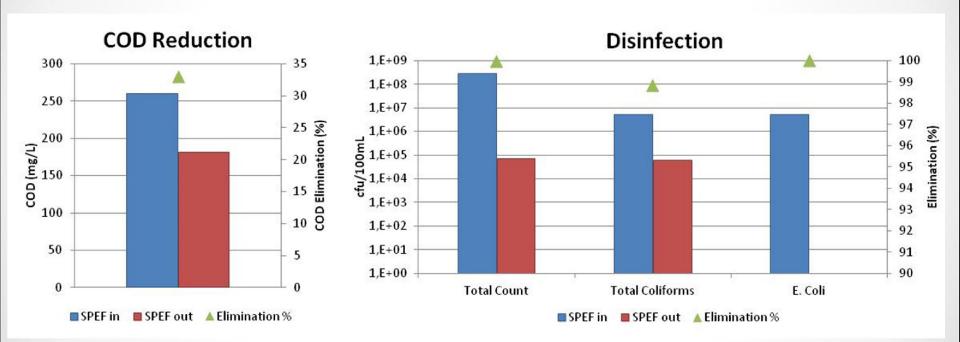
Innovation: Combination of electrogeneration of H_2O_2 , Fenton reaction and solar treatment for catalyst recovery.

Target pollutants: organic matter, organic micropollutants and microbiological charge.

Treatment line: Greywater


Solar Photoelectro-Fenton Operational parameters

Parameter	Value			
Anode & Cathode	BDD & GDC			
Input flow	20 L/h			
Retention time	30 min			
Input pH	3			
Air flow	2 L/h			
Parabolic collector volume	4 L			
Current intensity	10 A			



SPEF - Resume of results COD Reduction & Disinfection

SPEF - Resume of results

Micropollutants Abatement

г	Estrone	Estradiol	Bisphenol A	Carbamazepine	Diclofenac	Ibuprofen	Metoprolol	Sulfamethoxazole		
(A)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		
TEST 1										
SPEF in	0,73	2,61	2,16	3,53	3,58	3,60	2,56	1,80		
2,5	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
5	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
TEST 2										
SPEF in	4,92	3,94	5,14	4,17	0,00	9,27	3,15	1,70		
2,5	0,00	0,00	0,90	0,00	0,00	0,00	0,20	0,00		
5	0,00	0,17	0,80	0,00	0,00	0,00	0,11	0,00		
10	0,00	0,00	0,75	0,00	0,00	0,00	0,00	0,00		

Application into the market

Is it market-competitive?

- Estimated OPEX: 1,85€/m³
- Efficient treatment for recalcitrant organic pollutants

Who may be interested?

- Facilities with micropollutants polluted streams
- Firms looking for innovative refining solutions
- Companies desiring to further develop the technology

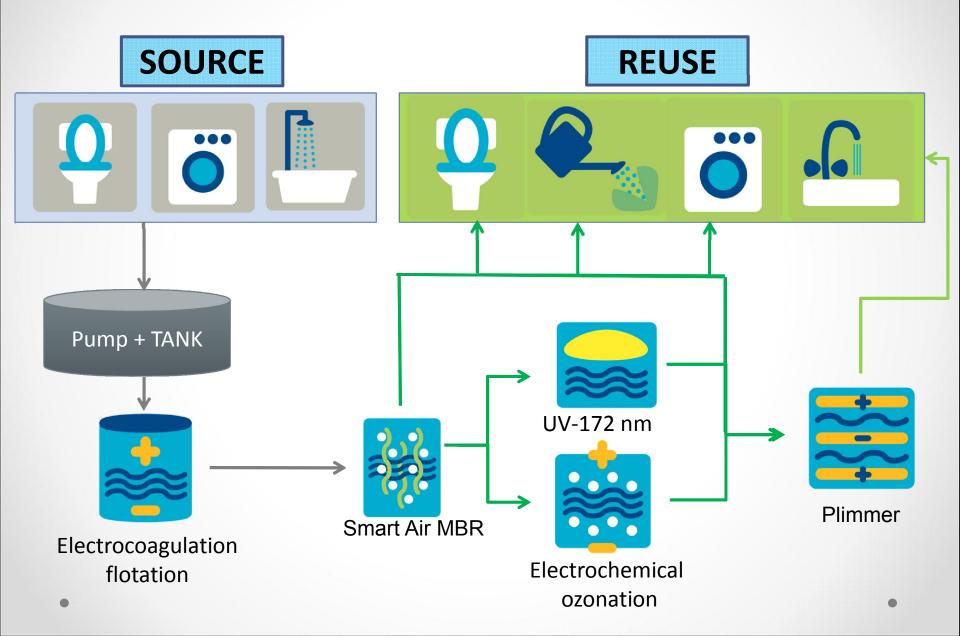
Thank you for your attention

For further information:

www.demEAUmed.eu

Leitat Technological Center

www.leitat.org


imontero@leitat.org

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No. 619116

Wastewater – ROADMAP

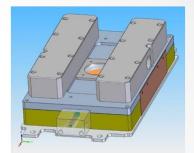
Funded under the Water and Innovation Action of the 7th Framework programme of RTD-D of the European Union

demEAUmed technological solutions 172nm UV

Walter Nadrag

demEAUmed final conference Barcelona, Spain 18th May 2017

- 1.The technology
- 1.Resume of results


1.Application into the tourism and water market

ImedThe existing technologyBasic principles

172nmUV: This photo reactors irradiates UV-Light with a wavelength of 172nm. These high energetic photons efficiently split water into reactive radicals e.g. hydroxyl radicals.

The following treatment is known as AOP (Advanced oxydation process). In AOP processes any complex and persistent organic molecules are going to be degraded.

Innovation: The photoreactor used by Sico is able to produce much more UV-Power than other known lamps in this spectral area. This fact enables the 172nmUV system to be used in commercial scale.

Targetpollutants:persistentorganicpollutants,pharmaceuticals, some heavy metals,

Treatment line(s): industrial/specified wastewater

The technology Operational parameters

Parameter

Operation, prototype

Batch run duration

flow

Influent req.

Temperature range

batch operation integrated 180I tank variable (20mins default) 2-20 L/h (2 Iamp setup) pre filtered (1µm) 5 - 45°C

Resume of results V9 (Tertiary treatment step!)

Go and check the poster for more details!

	тос	COD	TN	N-NO ₃
Unit	mgC/L	mgO2/L	mgN/L	mg/L
in	8,32	40,8	1,02	0,47
out	1,97	15 (<lod)< th=""><th>0,87</th><th>0,50</th></lod)<>	0,87	0,50
Removal	76 %	> 63%	15 %	No removal

Resume of results V29 (standard run - no optimization)

	Ibuprofene	COD
Unit	mg/L	mg/L
in	26,6	94
out	5,7	69
Removal	78 %	16 %

Where can it be applied? The existing 172nmUV prototype can be used best in environments where the wastewater volume is low and where the components of the wastewater are mostly known.

Is it market-competitive?

Yes, absolutely. It is the most powerful UV plasma AOP reactor known to us. The size and the power brings UV induced AOP into commercial scale.

Who may be interested?

Wastewater treatment companies, industrial partners (biotech, pharma, etc.) with problematic wastewater substances

Thank you for your attention

www.sico.at

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No. 619116

Funded under the Water and Innovation Action of the 7th Framework programme of RTD-D of the European Union

demEAUmed technological solutions

Electrochemical Ozonation

• • •

Christiane Chaumette

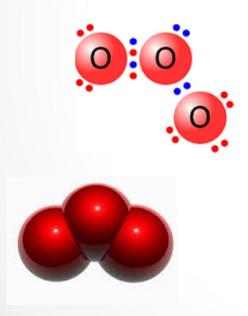
demEAUmed final conference Barcelona, Spain 18th May 2017

- 1. The technology
- 2. Resume of results

3. Application into the tourism and water market

1. The technology

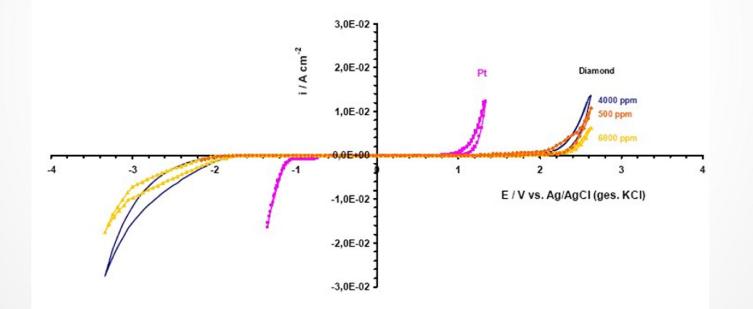
2. Resume of results


3. Application into the tourism and water market

demEAUmed Ozone produced by boron doped

diamond electrodes

 Oxygen derived ozone is a standard in drinking water treatment and a growing technology in wastewater treatment.



Voltametry BDD electrodes

 Ozone can also be generated from water by electrolysis with special electrode surfaces.

Ozonation

- No oxygen feed needed
- Automatic operation
- Chemical free process no need to add hydrogen peroxide, ozone or catalysts
- Adjustable treatment capacity
- Adjustable treatment intensity (saving energy)
- Disinfection of the treated water as a side-effect
- Independent of UV-absorbance of the feed water

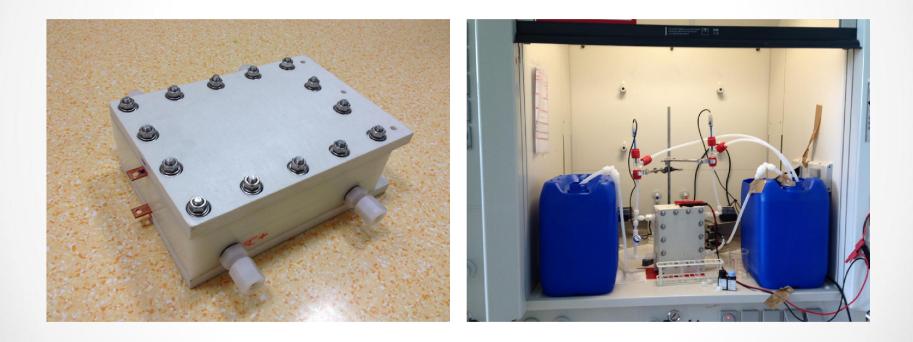
- 1. The technology
- **2. Resume of results**

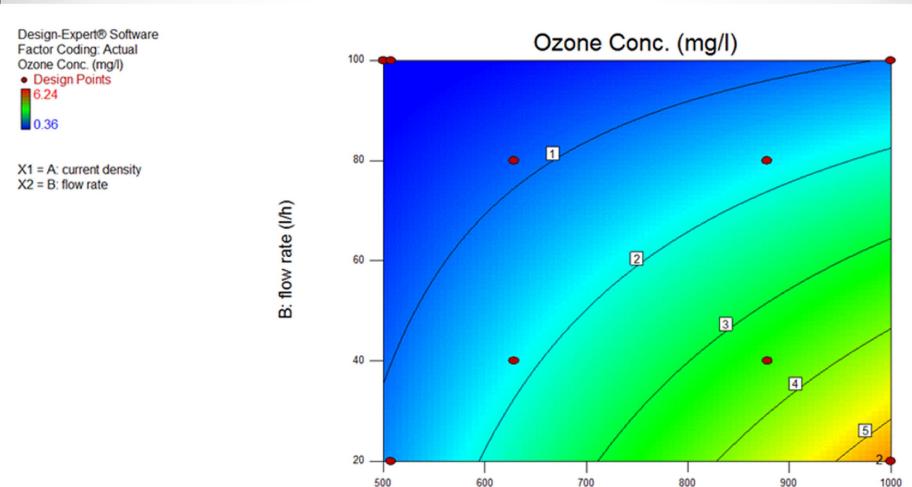
3. Application into the tourism and water market

First Apparatus for electrochem. Ozonation

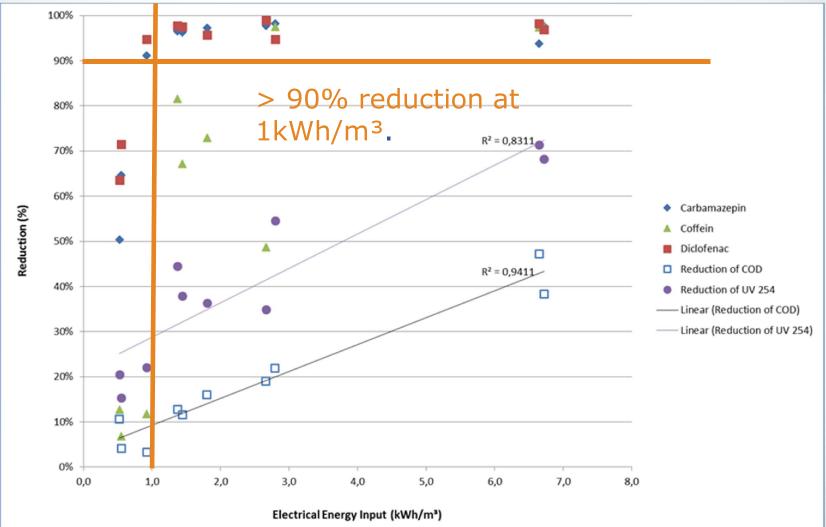
Laboratory Set-up 2 I

Demonstrator 10 I



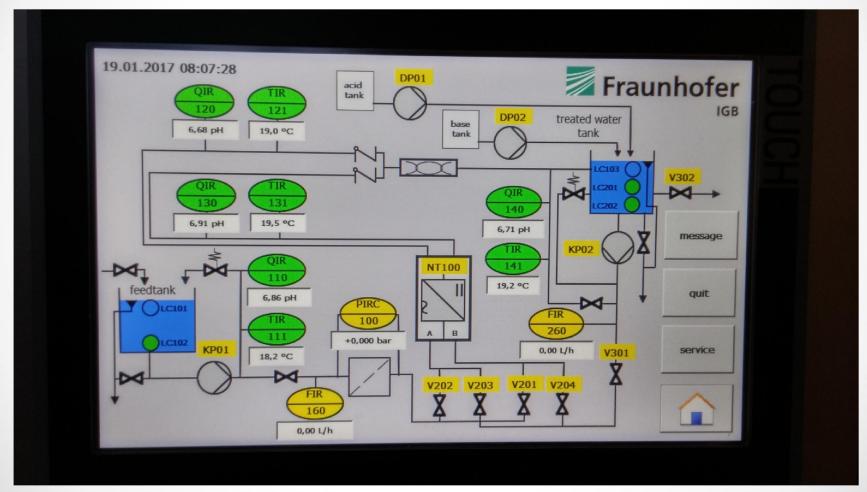

Direct Ozonation in a Thin Channel EUT Ozone Cell

Thin Channel EUT Cell: Continuous Treatment

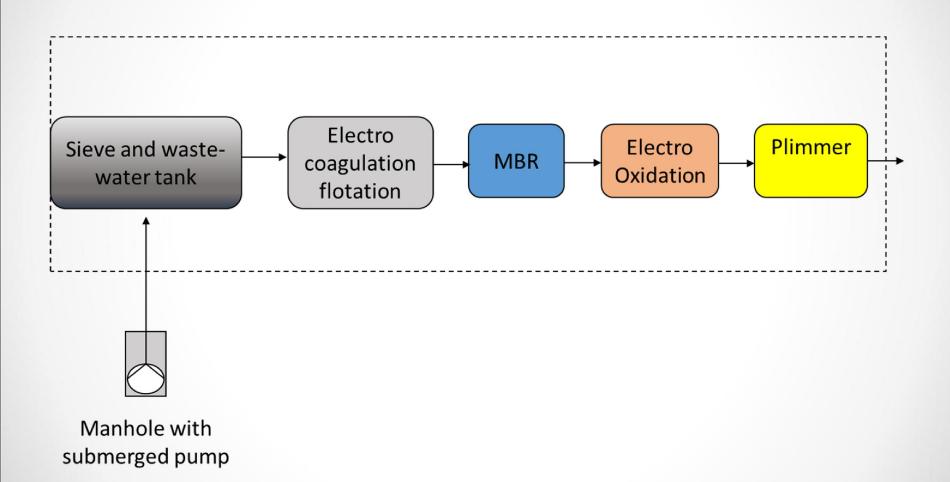


A: current density (A/m²)

Thin Channel EUT Cell: Continuous Treatment



Automated Electro-Ozonation (EO)Unit


Automated Electro-Ozonation (EO)Unit

Wastewater treatment line

- 1. The technology
- 2. Resume of results

3. Application into the tourism and water market

- The technology holds potential as polishing treatment for small to medium scale installations in view of achieving drinking water quality of the treated water.
- It removes emergent and priority pollutants even at trace levels and disinfects the water.
- The technology is in use today to remove organic substances from ultra-pure water and to directly treat recalcitrant or toxic industrial effluents.

Contact Information

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB

https://www.igb.fraunhofer.de/en/research/competences/physi cal-process-technology/process-and-wastewaterpurification.html

christiane.chaumette@igb.fraunhofer.de

Thank you for your attention

For further information:

www.demEAUmed.eu

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No. 619116

Funded under the Water and Innovation Action of the 7th Framework programme of RTD-D of the European Union

demEAUmed technological solutions

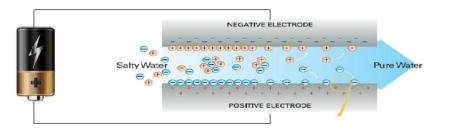
Plimmer

• • •

Tullio Servida

demEAUmed final conference Barcelona, Spain 18th May 2017

Q: Plimmer CDI what is this?


- Is a technology for water desalination
- Alternate to RO technology with lot more advantages
- Can be used for drinking water to improve quality
- Glass/Dish washers
- Boiler rooms to reduce fuel usage (10%)
- Can be used for grey/waste water reuse in combination with other techs
- Nutrients removal/recovery

Q:How it works?

Plimmer CDI: Capacitive deionization is a technology able to remove salts and nutrients from a water stream using a low DC voltage (1,5V)

Salts are removed during a period of about 1 minute and after this are discharged in a small residual volume that is about 20% of the feed water and cycle restart

demEAUmed Q: Why should I install Plimmer

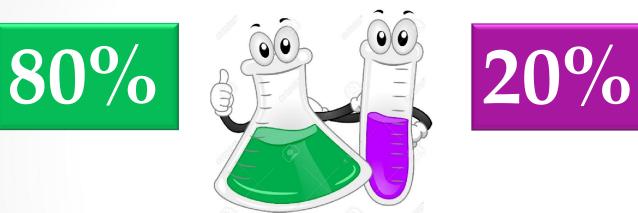
CDI?

- Removes the widest spectrum of inorganic contaminants
- Lowest water wastage expecially compared to RO
- In drinking water applications some minerals can be retained while contaminants are removed
- Selectivity in ions removal contaminants removed better than healty salts
- For water reuse applications nutrients like NO3 NH4 P can be removed
- Possible nutrients reuse
- Increase water quality

One technology

multiple salts removed

SALTS	METALS	OTHERS
 Total Dissolved Solids 	Chrome	• Ammonia
 Total Hardness 	• Iron	• Chromium 6
Calcium Carbonate	• Arsenic	
 Magnesium Carbonate 	• Nickel	
Sodium Chloride	Copper	
 Phosphates 	• Zinc	
Sulphates	Cadmium	
Chlorides	Mercury	
Nitrates	Manganese	
• Fluoride	• Lead	
	• Vanadium	



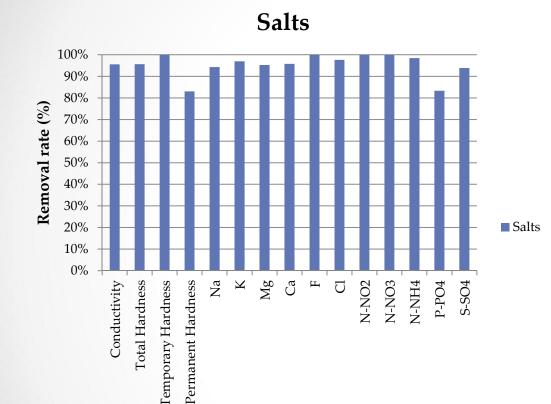
Q: How much water will I

recover for reuse?

CDI: High water recovery \rightarrow 80%

Competing tech's (RO): Low water recovery \rightarrow 50% in best conditions

Q: Will be more expensive


than RO?

- Plimmer CDI is optimally priced for:
 - Drinking water
 - Glass/Dish washers
 - Boiler rooms
- Plimmer CDI in water reuse will become a low OPEX technology
- Plimmer CDI lower OPEX will lead to a much lower «cost of ownership»
- Plimmer CDI can become a strategical choice for Hotel/Resort in water scarce environments

Water reuse: one example of quality

- Grey water reuse
- Pretreatment technology was «Green Wall»
- Water quality is superior
- More advanced use than just toilet flushing
- Possible use is «Contact water»
- Example cloth washing
- Water quality similar to waterworks or better

Thank you for your attention

IDROPAN-DELL'ORTO

For further information:

www.demEAUmed.eu

www.ldropan.com

t.servida@idropan.it e.Servida@idropan.it

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No. 619116

Funded under the Water and Innovation Action of the 7th Framework programme of RTD-D of the European Union

demEAUmed technological solutions

Smart Air MBR

Ignasi Rodriguez-Roda Gianluigi Buttiglieri

demEAUmed final conference Barcelona, Spain 18th May 2017

- 1. The technology
- 2. Objectives
- 3. The pilot plant
- 4. Resume of results
- 5. Application into the tourism and water market

1. The technology

MBR: Combination of a conventional activated sludge bioreactor and a membrane filtration system (MF/UF)

- Very high effluent quality
- Compact
- Automated

WATER REUSE DECENTRALIZED SYSTEMS

High energy consumption

1. The technology

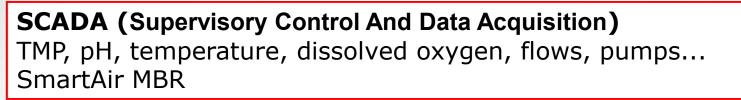
MBR: Combination of a conventional activated sludge bioreactor and a membrane filtration system (MF/UF)

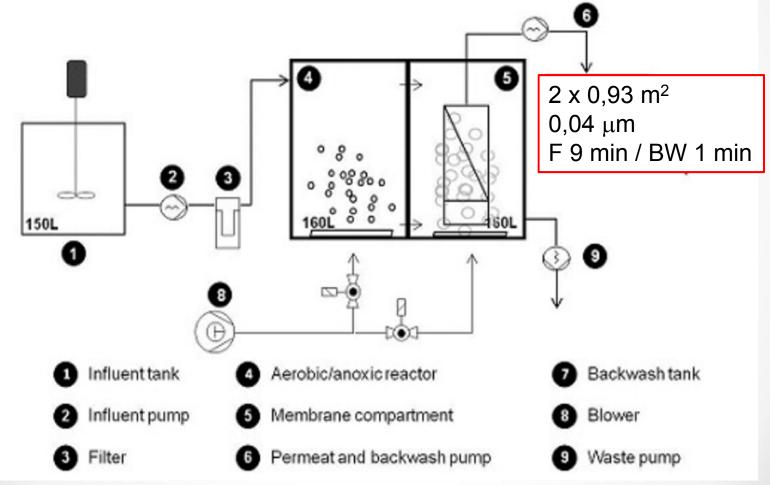
Innovation: air-scour control system based on permeability trend. Previous results demonstrate energy savings (up to 22%) in **municipal wastewater treatment**, minimizing fouling and keeping or improving nutrient removal efficiencies

Ferrero *et al.* ES2333837 Spanish Patent, 2010

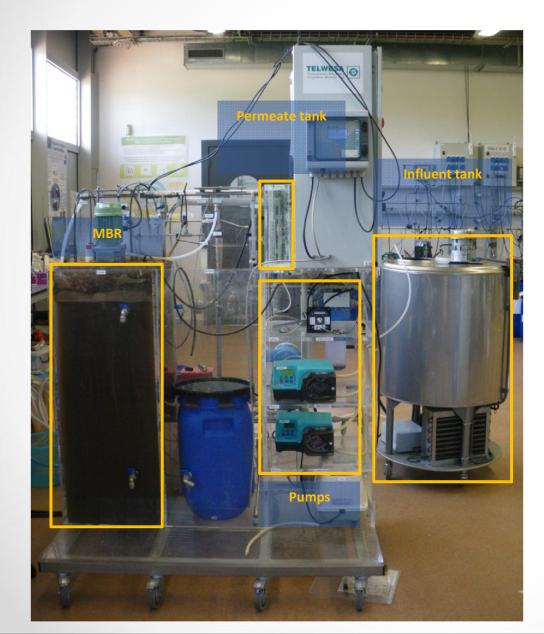
2. Objectives

- Validate/demonstrate smartAir MBR at the hotel
- Removal efficiencies (fouling, cost)
 - organic matter
 - nutrients
 - microbial indicators




- micropollutants (14 PhACs & 13 EDCs)
- Grey water? Black water? Water from other uses?
- Single/integrated system

3. The pilot plant



3. The pilot plant

In the lab (ICRA)

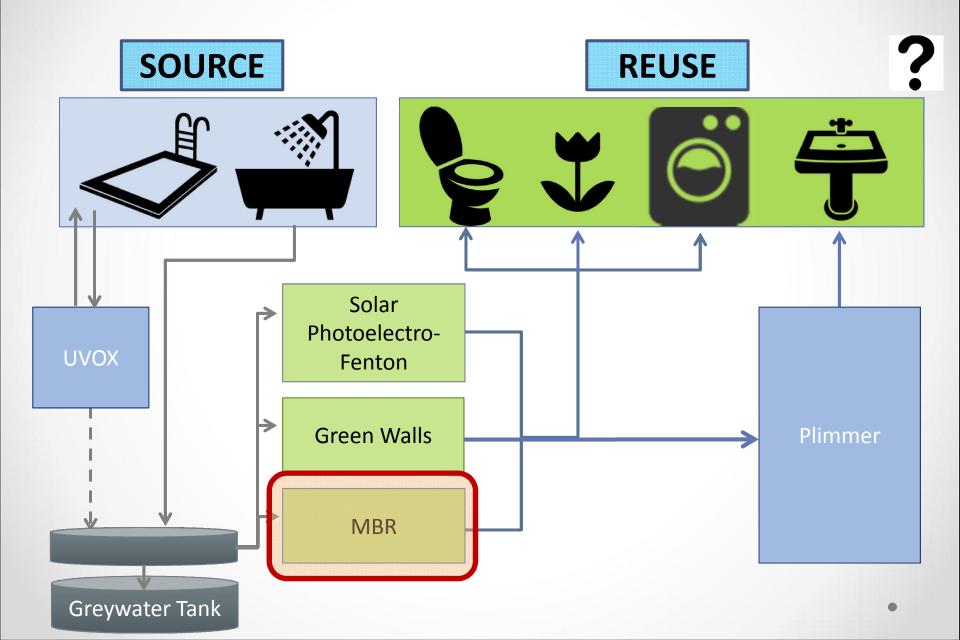
Synthetic water Shower and laundry 14 months

- 20-30- 40 L/h
- 10-15-20 LMH
- HRT 4-8 h
- SRT 20-22 d
- Air scour 3,5 m³/h

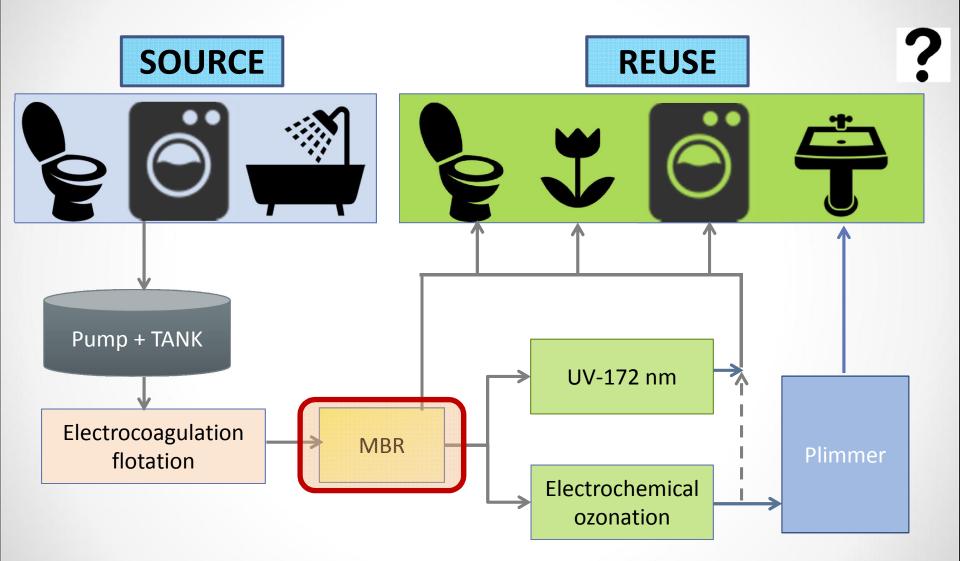
3. The pilot plant

In the demo site (Samba)

Real water from the hotel: Grey water (shower, 8 months) Wastewater (2 months)


- 20-30- 40 L/h
- 10-15-20 LMH
- HRT 4-8 h
- SRT 20-22 d
- Air scour 2 3,5 m³/h

Greywater – ROADMAP



Wastewater – ROADMAP

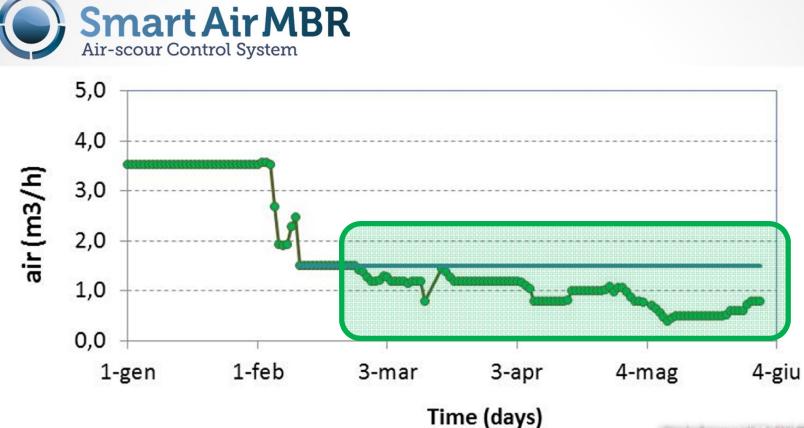
4. Resume of results

GREY WATER (Samba Hotel)

~ 90% removal of COD~ 95% removal of BOD5

~ 89% removal of TKN and NH4+ (nitrification) \leq 5 mg/L NO₃⁻ No removal of P

Pathogen removal between 3 and 5 logs


High (but variable) removal of micropollutants

4. Resume of results

- ~ 35,2% or air saving
- ~ SAD reduced from 0,75 to 0,27-0,45
- same fouling
- same removal efficiency

Where can it be applied?

- greywater effluents (shower and laundry)
- wastewater (or black) effluents (domestic and industrial)
- Who may be interested?
- water scarcity (Mediterranean area)
- high water quality required
- high water cost
- irrigation of recreational areas
- toilet flushing
- Decentralized areas

Thank you for your attention

For further information:

www.demEAUmed.eu

www.icra.cat irodriguezroda@icra.cat gbuttiglieri@icra.cat

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No. 619116