

Funded under the Water and Innovation Action of the 7th Framework programme of RTD-D of the European Union

Overview of 42 months for water reuse in touristic installations

de Recerca de l'Aigua

Gianluigi Buttiglieri **ICRA**

demEAUmed Final Conference **Barcelona** 18th May 2017

demEAUmed: the challenge

The importance of the tourism economy and its high water demand

The water scarcity characteristic of the Mediterranean area

demEAUmed as a critical platform for promoting of sustainable and innovative technologies in Euro-Mediterranean tourist facilities in the global tourism market

demEAUmed: objectives

Demonstrate and promote:

- The possibility of reduction of water consumption
 - Identify maximum use of water and their quality
 - Water cycle monitoring, control, DSS, LCA, environmental, socio and economical assessment for water management

- Integration of innovative technologies for an optimal and safe closed water cycle in Mediterranean tourist facilities
- Dissemination to other Euro-Mediterranean tourist facilities with a view to also global tourist market and MARKET UPTAKE

demEAUmed strategy

Effluent from external WWTP

Groundwater – surface water

Rainwater

Tap water

demEAUmed strategy

demEAUmed strategy

demEAUmed: the strategy

- 1. preliminary stage with study of the water cycle and tests of technologies and adaptation to the needs of the DEMO site
- 2. a main demonstration stage with technologies installed, integrated, optimized and validated
- demEAUmed technologies have never been jointly applied in a unique and optimized water management system.

demEAUmed activities

DEMO site water cycle diagnose

DEMO site water cycle diagnose

- Samba Hotel
 - Water use from 25,000 to 34,000 m³/year (100 to 135 L/person/day)
 - Grey water system for water closets

Water cycle diagnose

Sampling campaigns high and low touristic seasons:

✓ water quantity✓ water quality

Hotel – water cycle diagnose

in terms of quantity: water meters

dem**EAU**med

Water use sampling campaign

Extremely dynamic system in terms of flows... but also in terms of quality

demEAUmed Hotel – water cycle diagnose in terms of quality: sampling

Hotel – water cycle diagnose

Analyses

Standard chemical analyses

- Alcalinity, COD, BOD, TOC, conductivity, pH, TSS, VSS, N-NO₂⁻, N-NO₃⁻ P-PO₄⁻³⁻, Cl, Br⁻, F⁻, S-SO₄⁻, Cl-ClO₂⁻, Cl-ClO₃⁻, Na⁺, N-NH₄⁺, TKN, K⁺, Mg ²⁺, Ca ²⁺, etc.
- Metal content, Urea, THMs, HAAs, bromate, bromide, etc.

Microbiological indicators

 Total count, total coliforms, escherichia coli, legionella spp, intestinal enterococci, giardia, cryptosporidum, nematodes, clostridium perfringens

Micropollutants content:

- Pharmaceutical compounds (PhACs)
- EDCs, flame retardants (EDCs)

Why micropollutants in tourist facilities?

Expected matrix and concentrations similar to domestic grey- and waste-waters but the purpose is..

- To estimate load of micropollutants and tourism contributions to total contamination
- To evaluate seasonal variations
- To evaluate if and what kind of technologies for decentralized treatments in water scarcity scenarios:
 O Possible recalcitrant (micro)pollutants accumulation needs to

be carefully addressed

GREYWATER

WASTEWATER

HIGH SEASON				HIGH SEASON					
	DAY 1	DAY 2	DAY 3	AV.		DAY 1	DAY 2	DAY 3	AV.
ng/day	8325	3034	3635	4826	ng/day	7286	11090	24985	14235
ng/person/day	8.7	3.0	5.1	5.4	ng/person/day	7.6	11.0	35.3	16.0
	LOW SEASON					LOW SEASON			
	DAY 1	DAY 2	DAY 3	AV.		DAY 1	DAY 2	DAY 3	AV.
ng/day	2444	2117	611	1757	ng/day	12024	22955	12837	17171
ng/person/day	4.8	5.9	2.3	4.7	ng/person/day	23.5	64.3	48.8	45.5

seasons

Higher load variability between seasons

This **difference may affect strategy of treatment** (separated greywater from wastewater, seasonal variability, etc.)

SWIMMING POOL WATER

GREYWATER

WASTEWATER

Preliminary technological tests

Preliminary technological tests

Demonstration of innovative technologies

Example of P&ID

Greywater – ROADMAP

Wastewater – ROADMAP

Monitoring and control systems

Monitoring and control systems

Install sensors for monitoring quantity & quality of water.

greywater

wastewater

Monitoring and control systems

Integrate data in a processing system and create a Central Acquisition System for store and extract real time and historic data

Environmental & Socio-Economical Assessment

Sustainability assessment

Objectives

- Calculate sustainability benefits of demEAUmed solution compared with non closed-loop water systems
- Identify environmentally friendly improvements
- Provide recommendations in order to reduce their potential environmental and socio-economic impacts.

<u>Functional unit</u> (reference unit): **1m³ of grey water/waste water generated** and treated to be reused

Values for carbon footprint (Kg CO₂ eq.)

GREYWATER technologies (similarly for wastewater)

		VertECO	MBR	SPEF	Plimmer	UVOX
ies	VertECO	0,16		14,49	0,98	
olog	MBR		1,99	16,38	2,87	
schn	SPEF			12,96		
Τé	UVOX					-1,42

<u>Water savings</u>: maximum 730 m³/year per configuration

= twice swimming pool garden water consumption.

Also for Life Cycle Costing (LCC)

Values for €/m³ of water treated

Economic savings: maximum 730m³/year per configuration

= 1795.8 €/year (2.46€/m³).

Low

High

How to move back from our DEMO site to Mediterranean hotel facilities

Survey in different Euro-Mediterranean sites

Decision Support Tool and Modelling

demEAUmed: the results

Help in getting a stronger link between the water and the tourism sectors - for the benefit of both - and enhancing of the visibility of the water sector beyond EU borders:

- Identify and decrease water footprint (cost)
 - Reduction of fresh water consumption
 - Incorporation of advanced monitoring, control systems and DSS
- To optimize water management (health)
 - Environmental and socio-economic assessment
- To communicate to client/society (image and market uptake)

Thank you for your attention

For further information: www.demEAUmed.eu www.icra.cat gbuttiglieri@icra.cat

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No. 619116